Dental plaque DNA shows Neanderthals chewed ‘aspirin’

Ancient human mouths had same bacteria that cause caries and gum disease today

Ancient DNA found in the dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

In research findings published in March in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the United Kingdom, revealed the complexity of Neanderthal behavior, including dietary differences between Neanderthal groups and knowledge of medication. “Dental plaque of Neanderthals — our nearest extinct relative — has provided remarkable new insights into their behavior, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

Ancient human mouths had same bacteria that cause caries and gum disease today. Dental plaque DNA shows Neanderthals chewed ‘aspirin’.
Referrals Simplified
Securely and easily send electronic referrals

Send Referral

RecordLinc

Save time & stay compliant
Streamline communication among dental colleagues

Call: 415.749.1444
Visit: RecordLinc.com

PATIENT PORTAL REFERRALS SCHEDULING INTEGRATION MESSAGING eFORMS
Neanderthals, ancient and modern humans also shared some disease-causing microbes, including the bacteria that cause dental caries and gum disease. The Neanderthal plaque allowed reconstruction of the oldest microbial genome yet sequenced — *Methanobrevibacter oralis*, a commensal that can be associated with gum disease. Remarkably, the genome sequence suggests Neanderthals and humans were swapping pathogens as recently as 180,000 years ago, long after the divergence of the two species.

The team also noted how rapidly the oral microbial community has altered in recent history. The composition of the oral bacterial population in Neanderthals and both ancient and modern humans correlated closely with the amount of meat in the diet, with the Spanish Neanderthals grouping with chimpanzees and our forager ancestors in Africa. In contrast, the Belgian Neanderthal bacteria were similar to early hunter gatherers, and quite close to modern humans and early farmers. “Not only can we now access direct evidence of what our ancestors were eating, but differences in diet and lifestyle also seem to be reflected in the commensal bacteria that lived in the mouths of both Neanderthals and modern humans,” says Professor Keith Dobney, from the University of Liverpool.

“Major changes in what we eat have, however, significantly altered the balance of these microbial communities over thousands of years, which in turn continue to have fundamental consequences for our own health and well-being. This extraordinary window on the past is providing us with new ways to explore and understand our evolutionary history through the microorganisms that lived in us and with us.”

(Source: University of Adelaide)